INTRODUCTION

Multidrug resistant enterococci (MDR) are common pathogens that cause Health Care associated Infections (HAIs) in hospital settings and are an increasingly common clinical issue for health care providers. Infections caused by MDR enterococci can be difficult to treat and has become a challenge to handle in the medical setting due to the widespread misuse of antimicrobial agents resulting in development of resistance due to low affinity of the drug. This is encoded by the transmission of resistance genes through conjugative transposable elements and plasmid vector, play a significant role in the development MDR.

Changes in peptidoglycan formation that make up the bacterial cell wall leading to development of vancomycin resistance. Vancomycin usually attaches to the D-Ala-D-Ala end of peptidoglycan protein precursors. As this end is modified to D-Ala-lactate resulting in development of resistance due to low affinity of the drug. This is encoded by genotypes that are alphabetically known as vanA to vanG, vanM, and vanL. The vanA and vanB are plasmid-based genotypes but vanD and vanC are chromosomal genotypes.

Vancomycin Resistant Enterococci (VRE) develops resistance to aminoglycosides mostly due to the presence of 2'-phosphotransferase-6'-acetyltransferase enzyme, except in streptomyein resistance which caused by streptomyein adenyl-transferase production.

Despite these challenges, infection with VRE has been demonstrated to increase cost and mortality in comparison to vancomycin-susceptible strains.

ABSTRACT

Background: Multidrug resistant Enterococci (MDR) are important hospital acquired infections (HAIs). Objectives: This study aimed to determine the genetic basis of resistance to aminoglycosides and vancomycin in enterococci strains isolated from hospitalized patients with HAIs. Methodology: The disc diffusion method was used to detect high-level aminoglycoside resistance (HLAR) by using gentamicin (120 μg) and streptomycin (300 μg) discs. Nested PCR was performed for the six-aminoglycoside resistance genes. Vancomycin resistance genes were discovered by conventional PCR. Results: In a total of 100 Enterococcus isolates, aac(6')-Ie-aph(2'')-Ia gene was found in 30 strains, 25 of them were E. faecalis and the remaining were E. faecium. aph(3'). The presence of high levels of gentamycin and streptomycin resistance was more common in strains carrying aac(6')-Ie-aph(2'')-Ia gene. We detected vanA gene in 9 isolates and van C in 15 isolates. vanB was not detected. E. faecium strains containing the vanA gene were shown to be resistant to vancomycin by MIC (MIC > 32 μg/mL), nitrofurantoin, ampicillin and penicillin (P<0.001). Van C was detected in 12 isolates of E. faecalis, 1 isolate of E. faecium and 2 isolates of E. durans. E. faecalis carrying vanC gene was more resistant to aminoglycoside than vanC negative E. faecalis. Conclusion: E. faecalis has been seen to be more widespread than other Enterococcus species in our research. we found that the aac(6')-Ie-aph(2'')-Ia and aph(3')-IIIa genes are more frequently found than other genes.
Previous antimicrobial treatment is the most frequently examined risk factor for VRE infection. This process is likely to be due to changes in intestinal flora. In addition, those with serious underlying disorders, immunosuppressed or long-stay hospital patients are at higher risk. Aminoglycosides alone are considered ineffective in treatment of these infections and are commonly paired with bacterial cell wall development inhibitors such as ampicillin or vancomycin. Antibiotic therapy has been challenged by high-level aminoglycoside resistant (HLAR) and VRE.

Acquired genes that result in high levels of aminoglycoside resistance were reported resulting in high-level gentamicin resistance (HLGR, MIC 500 μg/ml) and high-level resistance to streptomycin (HLSR, MIC ~2000 μg/ml) and vancomycin (MIC >30 μg).

Due to lack of researches in our institute about vancomycin and aminoglycoside resistance, the current work designed to provide an overview on the frequency of HLAR and VRE strains in Suez Canal University Hospital (SCUH), Ismailia, Egypt.

METHODOLOGY

Collection of specimens

Various clinical specimens (wound, blood, urine, sputum, etc.) were collected; under aseptic conditions from patients admitted at Suez Canal University hospitals suffering from HAIs. Specimens were collected transported and processed in the Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University.

Isolation and identification of Enterococcus spp.

Gram staining, colony morphology, catalase test, bile solubility, growth in sodium chloride, bile esculin test, and growth at 10°C and 45°C were done to identify Enterococcus isolates using standard protocols. Different biochemical tests based on sugar fermentation tests, pyruvate utilization and arginine decarboxylation were performed for species identification. E. faecalis ATCC 29212 was used as a control reference strain.

A consent was taken from all patients to use their data in the current study. This study was approved by the Ethical Committee, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.

Antimicrobial resistance patterns were detected by VITEK 2 Compact 5 Automated ID/AST System (bioMérieux, Inc., Durham, NC, USA). HLAR in enterococci was detected applying gentamicin (120 μg) and streptomycin (300 μg) discs (Becton Dickinson, Franklin Lakes, NJ, USA) on Muller Hinton agar medium. Vancomycin Minimum Inhibitory Concentration (MIC) values were detected by agar diffusion method. E. faecalis ATCC 29212 (susceptible) and E. faecalis ATCC 51299 (resistant) were used.

Genotypic detection of vancomycin and HLAR genes:

DNA extraction:

Enterococcus DNA extraction was performed using Spin ABT Kit (Applied Biotechnology Co. Ltd, Egypt) from fresh subculture on Blood agar plates according to manufacturer’s instructions. DNA concentration and the purity were assessed by a Nanodrop considering the yield should be more than 20 μg and the A260/A280 ratio should be between 1.7–1.9.

Detection of aminoglycoside resistance genes by nested PCR:

Nest PCR was done in a total reaction volume of 50 μl in Thermocycler (R Corbett research model RG 6000). We used primer sets for the six-aminoglycoside resistance genes (total of 12 primers) (Table 1). First, initial lysing step for 3 min at 94°C was adjusted; followed by 35 cycles of 40 s at 94°C, 40 s at 55°C, and 40 s at 72°C with a final extension step of 2 min at 72°C.

Table 1: Aminoglycoside resistance genes primers sequences in multiplex PCR

<table>
<thead>
<tr>
<th>Aminoglycoside resistance gene</th>
<th>Product size (bp)</th>
<th>Primer sequence (5′-3′)</th>
<th>Amount of each primer (pmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>aac(6')-Ie-aph(2'')-Ia- F</td>
<td>369</td>
<td>CAG GAA TTT ATC GAA AAT GGT AGA AAA G</td>
<td>25 pmol</td>
</tr>
<tr>
<td>aac(6')-Ie-aph(2'')-Ia- R</td>
<td>348</td>
<td>CAG AGC CTT GGG AAG ATG AAG</td>
<td>25 pmol</td>
</tr>
<tr>
<td>aac(6')-Ie-aph(2'')-Ia- F</td>
<td>367</td>
<td>CCT CCG GAA ATT CAT GTT CTT GC</td>
<td>25 pmol</td>
</tr>
<tr>
<td>aph(2'')-Id</td>
<td>444</td>
<td>CCA CAG TTA TAA TAA TCA ACG TCT GTC TCC</td>
<td>3.5 pmol</td>
</tr>
<tr>
<td>aph(2'')-Id</td>
<td>641</td>
<td>GTT TTT TTT ACA GGA ATG ACA TCC</td>
<td>5 pmol</td>
</tr>
<tr>
<td>aph(2'')-Id</td>
<td>523</td>
<td>CCC TCT TCA TAC AAG TAA ACC AAC</td>
<td>3 pmol</td>
</tr>
<tr>
<td>ant(4')-Ia</td>
<td>294</td>
<td>CAA ACT GCT GAA TCG GTA AAG GAC</td>
<td>2 pmol</td>
</tr>
</tbody>
</table>

References:

1. Franklin, K. (1982). Antibiotic therapy has been challenged by high-level aminoglycoside resistant (HLGR, MIC 500 μg/ml) and vancomycin (MIC >30 μg).

2. Kishk et al. (2020). Different biochemical tests based on sugar fermentation tests, pyruvate utilization and arginine decarboxylation were performed for species identification.

3. E. faecalis ATCC 29212 was used as a control reference strain.

Acknowledgments:

This study was approved by the Ethical Committee, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.

Corresponding author:

Kishk et al. / High-Level Aminoglycoside and Vancomycin Resistance in Enterococcus, Volume 30 / No. 4 / October 2021 113-119

E-mail: info@ejmm-eg.com

www.ejmm-eg.com

METHODOLOGY

Collection of specimens

Various clinical specimens (wound, blood, urine, sputum, etc.) were collected; under aseptic conditions from patients admitted at Suez Canal University hospitals suffering from HAIs. Specimens were collected transported and processed in the Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University.

Isolation and identification of Enterococcus spp.

Gram staining, colony morphology, catalase test, bile solubility, growth in sodium chloride, bile esculin test, and growth at 10°C and 45°C were done to identify Enterococcus isolates using standard protocols. Different biochemical tests based on sugar fermentation tests, pyruvate utilization and arginine decarboxylation were performed for species identification. E. faecalis ATCC 29212 was used as a control reference strain.

A consent was taken from all patients to use their data in the current study. This study was approved by the Ethical Committee, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.

Antimicrobial resistance patterns were detected by VITEK 2 Compact 5 Automated ID/AST System (bioMérieux, Inc., Durham, NC, USA). HLAR in enterococci was detected applying gentamicin (120 μg) and streptomycin (300 μg) discs (Becton Dickinson, Franklin Lakes, NJ, USA) on Muller Hinton agar medium. Vancomycin Minimum Inhibitory Concentration (MIC) values were detected by agar diffusion method. E. faecalis ATCC 29212 (susceptible) and E. faecalis ATCC 51299 (resistant) were used.

Genotypic detection of vancomycin and HLAR genes:

DNA extraction:

Enterococcus DNA extraction was performed using Spin ABT Kit (Applied Biotechnology Co. Ltd, Egypt) from fresh subculture on Blood agar plates according to manufacturer’s instructions. DNA concentration and the purity were assessed by a Nanodrop considering the yield should be more than 20 μg and the A260/A280 ratio should be between 1.7–1.9.

Detection of aminoglycoside resistance genes by nested PCR:

Nest PCR was done in a total reaction volume of 50 μl in Thermocycler (R Corbett research model RG 6000). We used primer sets for the six-aminoglycoside resistance genes (total of 12 primers) (Table 1). First, initial lysing step for 3 min at 94°C was adjusted; followed by 35 cycles of 40 s at 94°C, 40 s at 55°C, and 40 s at 72°C with a final extension step of 2 min at 72°C.

Table 1: Aminoglycoside resistance genes primers sequences in multiplex PCR

<table>
<thead>
<tr>
<th>Aminoglycoside resistance gene</th>
<th>Product size (bp)</th>
<th>Primer sequence (5′-3′)</th>
<th>Amount of each primer (pmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>aac(6')-Ie-aph(2'')-Ia- F</td>
<td>369</td>
<td>CAG GAA TTT ATC GAA AAT GGT AGA AAA G</td>
<td>25 pmol</td>
</tr>
<tr>
<td>aac(6')-Ie-aph(2'')-Ia- R</td>
<td>348</td>
<td>CAG AGC CTT GGG AAG ATG AAG</td>
<td>25 pmol</td>
</tr>
<tr>
<td>aac(6')-Ie-aph(2'')-Ia- F</td>
<td>367</td>
<td>CCT CCG GAA ATT CAT GTT CTT GC</td>
<td>25 pmol</td>
</tr>
<tr>
<td>aph(2'')-Id</td>
<td>444</td>
<td>CCA CAG TTA TAA TAA TCA ACG TCT GTC TCC</td>
<td>3.5 pmol</td>
</tr>
<tr>
<td>aph(2'')-Id</td>
<td>641</td>
<td>GTT TTT TTT ACA GGA ATG ACA TCC</td>
<td>5 pmol</td>
</tr>
<tr>
<td>aph(2'')-Id</td>
<td>523</td>
<td>CCC TCT TCA TAC AAG TAA ACC AAC</td>
<td>3 pmol</td>
</tr>
<tr>
<td>ant(4')-Ia</td>
<td>294</td>
<td>CAA ACT GCT GAA TCG GTA AAG GAC</td>
<td>2 pmol</td>
</tr>
</tbody>
</table>

References:

1. Franklin, K. (1982). Antibiotic therapy has been challenged by high-level aminoglycoside resistant (HLGR, MIC 500 μg/ml) and vancomycin (MIC >30 μg).

2. Kishk et al. (2020). Different biochemical tests based on sugar fermentation tests, pyruvate utilization and arginine decarboxylation were performed for species identification.

3. E. faecalis ATCC 29212 was used as a control reference strain.

Acknowledgments:

This study was approved by the Ethical Committee, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.

Corresponding author:

Kishk et al. / High-Level Aminoglycoside and Vancomycin Resistance in Enterococcus, Volume 30 / No. 4 / October 2021 113-119

E-mail: info@ejmm-eg.com

www.ejmm-eg.com
Detection of Vancomycin resistance genes:
Genes for resistance were detected by conventional PCR. Primers used and PCR conditions were followed according to Aktas and colleagues \(^2^0\) (Table 2)

Table 2: Vancomycin resistance genes primers sequences.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Primers (5'-3')</th>
<th>Product, base pairs (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van A F</td>
<td>CAT GAA TAG AAT AAA AGT TGC AAT A</td>
<td>1030</td>
</tr>
<tr>
<td>Van A R</td>
<td>CCC CTT TAA CGC TAA TAC GAT CAA</td>
<td></td>
</tr>
<tr>
<td>Van B F</td>
<td>GTG ACA AAC CGG AGG CGA GGA</td>
<td>433</td>
</tr>
<tr>
<td>Van B R</td>
<td>CCG CCA TCC TCC TGC AAA AAA</td>
<td></td>
</tr>
<tr>
<td>Van C F</td>
<td>GAA AGA CAA CAG GAA GAC CGC</td>
<td>796</td>
</tr>
<tr>
<td>Van C R</td>
<td>ATC GCA TCA CAA GCA CCA ATC</td>
<td></td>
</tr>
</tbody>
</table>

Demonstration of PCR products
The PCR products were investigated in a 2% (w/v) agarose gel in 1X Tris Borate EDTA (TBE) (Wisent, Canada). Ethidium bromide-stained DNA amplicons were visualized under UV light and photographed using gel documentation system (syngen G: box, UK). DNA marker with defined molecular weights in the range 100-1500 bp was used.

Data Management and Statistical Analysis
SPSS (version 22 for windows) was used to conduct all statistical analyses. Statistical significance was defined as a p value of less than 0.05.

RESULTS
One hundred non copied Enterococcus isolates were collected from patients with HAIs admitted to SCUH, Ismailia, Egypt. The mean ± SD of age was 52 years±1.56, with a range of 15 to 86 years. Elderly patients (≥65 years) were the most susceptible groups for enterococcal infection (P<0.001). Most strains (42%) were detected from urine, 33% from wound,15% from abscesses and 6% from blood and 4% from body fluid samples (peritoneal and ascetic fluid).

Four different species were characterized by biochemical reactions. Most of strains (62%) were E. faecalis, (30%) were E. faecium, (6%) were E.durans and only (2%) were E.avium.

Generally, most strains were susceptible to teicoplanin (95%), linezolid (90%), ampicillin and penicillin (76% for each) and nitrofurantoin (68%). Susceptibility to fluoroquinolones was detected in levofloxacin (41%) and ciprofloxacin (39%). HLGR was identified in 38% of isolates, most of them were from urine (24/38), wounds (13/38) and blood (1/38). HLSR was identified in 59% and were detected from urine (25/59), wound (17/59), abscesses (8/59), blood (6/59) and body fluid (3/59). Meanwhile, we found 23% of strains were resistant to both gentamycin and streptomycin.

All strains were susceptible to vancomycin by disc diffusion method. VRE was considered if MIC ≥32. MIC was ranged from 0.5 to 256 μg/mL with 15 isolates were found to be resistant to vancomycin. Most of them (12 strains) were E.faecalis and three of them were E. faecium

Regarding the species level of enterococci, E. faecalis were noticed to be more resistant to tetracycline, gentamycin and streptomycin (P<0.05), and more susceptible to nitrofurantoin, ampicillin, penicillin, levofoxacin, erythromycin and linezolid (P<0.05). Meanwhile, E. faecium strains were observed to be more resistant to ampicillin, penicillin and nitrofurantoin (p<0.01), and more susceptible to tetracycline than the other isolates (P<0.001).

Recognition of aminoglycoside resistance was performed by nested PCR to detect 7 genes for resistance. aac(6')-Ie-aph(2'')-Ia gene (348 bp) was found in 30 strains, 25 strains of them were E.faecalis and the leftover was E. faecium. aph(3')-IIIa gene (623 bp) was detected in 10 strains which were E. faecalis. All strains with aph(3')-IIIa gene was positive for aac(6')-Ie-aph(2'')-Ia gene. We didn't detect aph(2'')-Ib gene. aph(2'')-Ic gene(444bp) , or aph(2'')-Id (641 bp), ant(4')-Ia gene (294bp). HLGR and HLSR were found more frequently in isolates with aac(6')-Ie-aph(2'')-Ia gene (P<0.001) (Figure 1).
Fig. 1: Amplification of Aminoglycoside resistance genes by nested PCR. \textit{aac(6')-Ie-aph(2')-Ia} gene (348bp) and \textit{aph(3')-IIIa} gene (523 bp) were detected. Other genes were negative.

We detected both \textit{vanA} (1030 bp) and \textit{van C} (796 bp) genes in 9 and 15 isolates respectively. All isolates with \textit{vanA} gene were \textit{E. faecium} and were observed to be resistant to vancomycin by MIC (MIC > 32 μg/mL), nitrofurantoin, ampicillin and penicillin (P<0.001). \textit{Van C} was identified in \textit{E. faecalis} (12 isolates), \textit{E. faecium} (one isolate) and \textit{E. durans} (Two isolates). \textit{E. faecalis} carrying \textit{vanC} gene was more resistant to aminoglycoside than \textit{vanC} negative \textit{E. faecalis}. We discovered that 6 isolates were carrying both \textit{aac(6')-Ie-aph(2')-Ia} gene and \textit{vanA} gene (Figures 2A and 2B).

Fig. 2: \textit{VanC} gene (796 bp) detection in Enterococci isolates.
DISCUSSION

Enterococci have grown in importance as HAIs in recent years, owing to their intrinsic resistance to antibiotics (cephalosporins), living in extreme environments and capacity to adhere to indwelling medical devices. In the present work, out of the total 100 Enterococcus isolates from various clinical samples, maximum numbers of Enterococcus isolates were from urine (42%). Similar observations were noticed in different studies.

The frequency of antibiotic susceptibility was as follows: ciprofloxacin (39%), ampicillin and penicillin (76% for each) and nitrofurantoin (68%). Linezolid and vancomycin were found sensitive in 90% and 85% isolates. Other studies show prevalence of antibiotic resistance as ciprofloxacin (25%), penicillin (66.67%), and nitrofurantoin in urinary isolates (24.3%). Linezolid and vancomycin were found sensitive in 99% and 95% isolates of enterococcus.

We detected HLGR in 38% of strains, while HLSR was discovered in 59% of strains. In another research, the frequency of HLGR was 29% of the studied isolates, instead HLR was reported in 35% of the same isolates. In addition, other studies reported high incidence of HLGR.

E. faecalis were noticed to have more resistant to tetracycline, gentamycin and streptomycin and more susceptible to nitrofurantoin, ampicillin, penicillin, levofloxacin, erythromycin and linezolid. On the other hand, E. faecium were noticed to have more resistant to ampicillin, penicillin and nitrofurantoin, and more susceptible to tetracycline than the other strains.

Genes for aminoglycoside resistance were observed with a higher frequency in E. faecalis than in E. faecium, which is coherent to previous studies. We found that aac(6′)-Ie-aph(2″)-Ia was the greatest widespread resistance gene detected in 30 strains followed by aph(3′)-IIIa gene was found in 10 strains. These results were matched with numerous studies. Another research reported less frequency of aac(6′)-Ie-aph(2″)-Ia while ant (3″)-III was more frequent.

Due to its tendency for acquiring and transmitting genes, VRE are considered one of the prominent causes of HAIs and a major public health concern according to previous reports.

In the present research, Van C was revealed in 12 isolates of E. faecalis, 1 isolate of E. faecium and 2 isolates of E. durans. In difference to our study, VRE was reported in 2% of E. faecalis and 60% of E. faecium isolates. Our study detected vanA gene in 9 isolates and vanB in 15 isolates. Like our results, Cekin et al. did not discovered vanB among enterococci.

One of the key causes contributing to the rising frequency of VRE and HLAR is a lack of effective antibiotic therapy and infection control actions to prevent MDR enterococci from spreading. For clinicians, such stresses represent a risk of therapeutic failure. Laboratories may need to provide precise antibiotic resistance patterns for enterococci.

CONCLUSION

E. faecalis was noticed to be more frequent Enterococcus species in this work. Resistance to gentamicin and streptomycin antibiotics were detected phenotypically although the absence of resistance genes. This could be attributable to the expression of gene is not involved in this study analysis.

We noticed that the aac(6′)-Ie-aph(2″)-Ia and aph(3′)-IIIa genes were more frequently detected than other genes, and that both genes coexist.

Acknowledgments: We acknowledge all who participated in this work.

This manuscript has not been previously published and is not under consideration in the same or substantially similar form in any other reviewed media. I have contributed sufficiently to the project to be included as author. To the best of my knowledge, no conflict of interest, financial or others exist. All authors have participated in the concept and design, analysis, and interpretation of data, drafting and revising of the manuscript, and that they have approved the manuscript as submitted.

REFERENCES

