Assessment of Colistin Susceptibility among Carbapenem-Resistant Clinical Isolates

Soma E. Ajlan, Esraa E. Elmahdy, Asmaa S. Sleem*
Medical Microbiology and Immunology Department, Faculty of Medicine, Menoufia University, Egypt

ABSTRACT

Background: Colistin is the last treatment option for infections caused by carbapenem resistant Gram-negative bacilli (CRGNB). The increasing spread of chromosomally encoded and plasmid-mediated colistin resistance made colistin susceptibility assessment a necessity. **Objectives:** Assessment of colistin susceptibility in CRGNB by broth micro dilution method (BMD), as the standard method and colistin broth disk elution method (CBDE), as a substitute procedure. Genotypic determination of plasmid mediated colistin resistance (mcr) genes as also done. **Methodology:** CRGNB were collected and identified by conventional methods. Testing carbapenemase production by modified Carbenapen Inactivation Method (mCIM) and colistin susceptibility (by BMD and CBDE) were done and results were interpreted regarding CLSI (2022) guidelines followed by genotypic detection of mcr-1, -2, -3, -4, and -5 genes by multiplex PCR. **Results:** 155 out of 308 GNB (50.3%) were carbapenem resistant. Among them, 129 (83.2%) isolates were carbapenem positive by mCIM. Colistin susceptibility testing by BMD revealed 43 out of 155 CRGNB isolates (27.7%) were colistin resistant. Sensitivity, Specificity, PPV, NPV and Accuracy of CBDE were 99.09%, 93.33%, 97.32% 97.67%, 97.42% respectively with almost perfect agreement with BMD. By PCR, only 3 CRGNB isolates (6.98%) carried mcr-1 while other mcr genes were not detected at all. **Conclusion:** Colistin resistance rate among CRGNB is concerning, causing serious and even deadly infections so prospective surveillance is essential. Broth disk elusion method is a simple, non-expensive reliable option to test colistin susceptibility.

INTRODUCTION

Antimicrobial resistance (AMR) remains a formidable and alarming public health threat worldwide. It causes high morbidity and mortality. The capability of Gram-negative microbes to acquire mobile genetic elements including carbapenemase genes can confer augmented resistance limiting treatment options. These pathogens are included in both types of human infections, hospital and community with frequently express resistance to most antibiotics classes. Thus, the determination of carbapenemase-producing organisms is paramount for treatment decisions beside infection control.

The polymyxins including colistin are considered the last choice of antibiotics for treatment of infections with carbapenem resistant Gram-negative bacilli (CRGNB). Colistin interacts with the bacterial outer membrane by removing divalent cations from the negatively-charged phosphate groups of the Lipid A leading to cell lysis. Colistin is very effective against most Enterobacterales and non-fermenting Gram-negative pathogens such as Pseudomonas aeruginosa and Acinetobacter baumannii. On the contrary, colistin is inactive against Gram-negative cocci, anaerobic and Gram-positive bacteria. Also, Some Enterobacterales such as Proteus mirabilis, Morganella morganii, Serratia marcescens, and Burkholderia spp have colistin intrinsic resistance as a result of genes' constitutive expression (i.e. \textit{epfB}) which leads to LPS modification.

Bacteria have gained several mechanisms to protect themselves against colistin. The main mechanism is LPS modification through acquiring genes like mobile colistin resistance (mcr) and \textit{PhoPQ} and \textit{PmrAB} genes and its regulators genes (i.e. \textit{mgrp}) in addition, bacteria can inactivate the biosynthesis of lipid A genes (\textit{lpxA}, \textit{lpxC} and \textit{lpxD}) then, LPS will be completely lost. Other mechanisms of colistin resistance include efflux-pump systems overexpression and capsular polysaccharide overproduction.

Recently, worldwide hospital outbreaks have occurred due to colistin-resistant strains. Acquired colistin resistance is based mainly on diverse chromosomal mutations, but the excessive usage of colistin in both veterinary and human health sectors has promoted development and spread of the plasmid-encoded mobile colistin resistance (mcr) genes (\textit{mcr-1} to \textit{mcr-10}) with several variants.

Assessing colistin susceptibility remains a challenge. Large colistin molecular size in addition to its cationic nature resulting in poor colistin disk diffusion and...
therefore, disk diffusion method was not recommended. Broth micro dilution (BMD) was recommended as the standard procedure. This standard technique is quite laborious, time-consuming, difficult to interpret, susceptible to mistakes, not suitable for most laboratories. Currently, agar dilution and colistin broth disk elution (CBDE) are acceptable methods.

This study is intended to assessing colistin susceptibility pattern among CRGNB by broth micro dilution method (BMD), as the standard method and colistin broth disk elution method (CBDE), as a substitute procedure. Genotypic detection of plasmid mediated mcr genes (mcr-1, -2, -3, -4, and -5 genes) was also done.

METHODOLOGY

Study design and patients:
This comparative, cross-sectional study was conducted at Medical Microbiology Department and Molecular Unit, Central Laboratory, Faculty of Medicine, Menoufia University, during the period from November 2020 to Mars 2022. Clinical isolates (n=155 CRGNB) were obtained from Menoufia University Hospitals admitted patients (n= 674). Written informed consents were obtained from those patients and from the guardians of unaware patients upon sample collection. The study has been approved by the ethical committee, Faculty of Medicine, Menoufia University. Calculation of sample size was done using open Epi program with power of study 80% and confidence level 95%.

Inclusion criteria:
- Both sexes (male and female).
- All age groups
- Patients showing signs of sepsis or pyogenic infections
- Carbapenem resistant GNB.

Exclusion criteria:
- Patients refusing participation.
- Patients showed good response to antibiotic therapy.
- Culture did not meet the criteria of infection
- Pathogens having colistin intrinsic resistance e.g. Proteus, Serratia and Morganella

Specimens:
Different microbial specimens were collected under aseptic conditions on clinical suspicion of infection according to standard definitions. Specimens included respiratory specimens, urine, blood, pus and wound swab specimens. Then specimens transported in suitable transport media (when needed) to be processed in the Microbiology Laboratory.

Bacterial identification and testing for antibiotic susceptibility
Collected specimens were cultured on nutrient agar, blood agar, and MacConkey agar plates (Oxoid, UK) then incubated aerobically at 37°C for 24 hours. Followed by identification of obtained colonies up to species level via conventional techniques. Testing for Antimicrobial susceptibility was done using disk diffusion method against different antimicrobial agents (Oxoid, Basingstoke, UK) as recommended by Clinical Laboratory Standard Institute (CLSI). Escherichia coli ATCC 25922 had been used as standard quality control strain. Isolated Gram negative bacilli were further preserved on tryptic soy broth with 16% glycerol and frozen at -80°C.

Phenotypic detection of carbapenem resistant and carbapenemases producers' strains.
Isolated Gram negative pathogens showing resistance to at least one of four carbapenems (imipenem, meropenem, doripenem and ertapenem) were further phenotypically screened for carbapenemases production by modified carbapenem inactivation method (mCIM) and EDTA-modified carbapenem inactivation method (eCIM).

Phenotypic detection of colistin-resistance:
Colistin minimum inhibitory concentration (MIC) for all CRGNB was determined by BMD method and CBDE methods. Regarding CLSI recommendations, Colistin MIC of ≤ 2 μg/mL was considered intermediate, whereas MIC of ≥ 4 μg/mL was considered resistant.

Genotypic detection of colistin-resistance mcr genes:
The isolate that exhibited colistin MIC value ≥ 4 μg/mL was further investigated for the existence of mcr-1, -2, -3, -4, and -5 genes. Bacterial DNA extraction and purification was performed using QIAamp DNA Mini Kit (Qiagen, Germany, cat. no. 51306). The used primers are listed in table 1. The amplification cycle was: 15 min at 94°C, followed by 25 cycles of 30 s at 94°C, 90s at 58 °C, 1 min at 72°C, and a final extension time of 10 min at 72°C. Electrophoresis was done with gel 2% for 20 minutes then the products were visualized by UV and compared with DNA ladder.

Statistical analysis:
Data coding, validation and analysis were conducted by the Statistical Package for the Social Sciences (SPSS), version 22 (SPSS Inc., Chicago, IL, USA). Frequencies and proportions were used to present the data.
Table 1: Primers sequences used for mcr gene detection

<table>
<thead>
<tr>
<th>Target gene</th>
<th>GenBank</th>
<th>Primers and conditions</th>
<th>Melting temperature - Tm (°C)</th>
<th>Product size (bp)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>mcr-1</td>
<td>KP347127</td>
<td>F 5'-AGTCCGTGGTGTTTGTGTTGTCG-3' R 5'-AGATCCTTGGTCGGGCTTG-3'</td>
<td>58</td>
<td>320</td>
<td>15</td>
</tr>
<tr>
<td>mcr-2</td>
<td>LT598652</td>
<td>F 5'-CAAGTGTTGGTGTGCAAGTT-3' R 5'-TCTAGCCCGACAAGCATTACC-3'</td>
<td>58</td>
<td>715</td>
<td>15</td>
</tr>
<tr>
<td>mcr-3</td>
<td>KY924928</td>
<td>F 5'-AAATAAAAATTTGTTCCGATT-3' R 5'-AATGGAGATCCCCGTTTT-3'</td>
<td>58</td>
<td>929</td>
<td>15</td>
</tr>
<tr>
<td>mcr-4</td>
<td>MF543359</td>
<td>F 5'-TCACCTTCATCCTGCGTTG-3' R 5'-TTGTTGCAGTACACTACCAATG-3'</td>
<td>58</td>
<td>1116</td>
<td>15</td>
</tr>
<tr>
<td>mcr-5</td>
<td>KY807921</td>
<td>F 5'-ATGCGGTTCGGTCTCAGTTTATG-3' R 5'-TCATTGGTGTTGCTCTTTCTG-3'</td>
<td>58</td>
<td>1644</td>
<td>15</td>
</tr>
</tbody>
</table>

RESULTS

Overall, 308 no duplicate clinical GNB pathogens were isolated, including 114 E. coli (37%), 96 Klebsiella spp (31.2%), 42 Pseudomonas aeruginosa (13.6 %), 23 Acinetobacter spp (7.5%), 20 Enterobacter spp (6.5%) and 13 Citrobacter spp (4.2 %) retrieved from 187 males (60.7%) and 121 females (39.3%) patients from all age groups (mean =44±27 years) admitted to different Departments of Menoufia University Hospitals from November 2020 to Mars 2022.

Susceptibility testing revealed 155 carbapenem resistant isolates out of 308 GNB (50.3%). The highest carbapenem resistant pathogen was Klebsiella spp (56/155, 36.1%) followed by Escherichia coli (51/155, 32.9%), Pseudomonas aeruginosa (20/155, 12.9%), Acinetobacter spp (13/155, 8.4%), Enterobacter spp (9/155, 5.8%) and Citrobacter spp (6/155, 3.9%). The sources of carbapenem resistant isolates were urine (38.1%), respiratory samples (29.7%), blood (21.3%), pus and wound swabs (10.9%). Intensive Care Units were the main source of these samples (50.32%), followed by Surgical departments (18.71%), Nursery (14.84%), Medical departments (9.03%) and Burn Unit (7.1%). as illustrated in figure 1.

Fig. 1: Source of carbapenem resistant isolates. (A) Clinical specimens; (B) Departments
The highest antimicrobial susceptibility pattern among CRGNB isolates was to colistin (72.3%), followed by ceftazidime-avibactam (67.7%), and tigecycline (63.2%). While the highest antimicrobial resistance was observed against ampicillin and aztreonam (100% for each), followed by ampicillin-sulbactam, amoxicillin-clavulanate (98% for each), cefuroxime (96.8%), ceftriaxone (95.5%), cefotaxime, ceftazidime (94.9%), cefepime (87%), ciprofloxacin (86.5%), piperacillin-tazobactam (84.5%), gentamicin (82.6%), levofloxacin (81.3%), trimethoprim-sulfamethoxazole (76.2%) and amikacin (73.5%).

In this study, carbapenemase production was the main carbapenem resistance mechanism. As we detected 129 out 155 CRGNB isolates (83.2%) were carbapenemases positive by mCIM among them 85 isolates (65.9%) were metallo-β lactamase producers by eCIM (figure 2).

Regarding colistin MIC by BMD, CRGNB isolates demonstrated the maximum colistin MIC at 2μg/mL (31.6%), followed by 1 μg/mL (27.1%), ≤0.5 μg/mL (13.6%), 8μg/mL (11.6%), 4 μg/mL (8.4%) and ≥16 μg/mL (7.7%). While, carbapenem susceptible GNB isolates demonstrated the maximum colistin MIC at ≤0.5 μg/mL (54.2%) followed by 1 μg/mL (25.5%), 2μg/mL (14.4%), 4 μg/mL (3.3%), 8 μg/mL (01.95%) and ≥16 μg/mL (0.65%). As Illustrated in figure 3 and table 2. There was a high statistically significant difference (p >0.001) between carbapenem susceptible and carbapenem resistant GNB isolates regarding colistin susceptibility. As 43/155 (27.7%) of carbapenem resistant GNB isolates were colistin resistant. While, only 9/153 (5.9%) of carbapenem susceptible GNB isolates were colistin resistant as illustrated in table 3.

Figure 3: Colistin MICs by BMD among studied GNB isolates

![Figure 2: Phenotypic detection of carbapenemase production. (A) Modified Carbapenem Inactivation Method (mCIM); (B) enhanced Carbapenem Inactivation Method (eCIM)](image-url)
Table 2: Distributions of colistin MICs determined by BMD among studied GNB isolates

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Carbapenem susceptibility</th>
<th>Colistin MIC by BMD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>≤0.5 μg/mL</td>
</tr>
<tr>
<td>E. coli (n=114)</td>
<td>S (n= 63)</td>
<td>39(62%)</td>
</tr>
<tr>
<td></td>
<td>R (n= 51)</td>
<td>7(13.7%)</td>
</tr>
<tr>
<td>Klebsiella spp (n=96)</td>
<td>S (n=40)</td>
<td>13(52.5%)</td>
</tr>
<tr>
<td></td>
<td>R (n=56)</td>
<td>2(3.6%)</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa (n=42)</td>
<td>S (n=22)</td>
<td>13(59.1%)</td>
</tr>
<tr>
<td></td>
<td>R (n=20)</td>
<td>7(35%)</td>
</tr>
<tr>
<td>Acinetobacter spp (n=23)</td>
<td>S (n=10)</td>
<td>4(40%)</td>
</tr>
<tr>
<td></td>
<td>R (n=13)</td>
<td>3(23.1%)</td>
</tr>
<tr>
<td>Enterobacter spp (n=20)</td>
<td>S (n=11)</td>
<td>1(9.1%)</td>
</tr>
<tr>
<td></td>
<td>R (n=9)</td>
<td>1(11.11%)</td>
</tr>
<tr>
<td>Citrobacter spp (n=13)</td>
<td>S (n=7)</td>
<td>1(14.3%)</td>
</tr>
<tr>
<td></td>
<td>R (n=6)</td>
<td>1(16.7%)</td>
</tr>
<tr>
<td>Total (n=308)</td>
<td>S (n=153)</td>
<td>83(54.2%)</td>
</tr>
<tr>
<td></td>
<td>R (n=155)</td>
<td>21(13.6%)</td>
</tr>
<tr>
<td>TOTAL (n=308)</td>
<td>104(33.8%)</td>
<td>88(28.6%)</td>
</tr>
</tbody>
</table>

Table 3: Relation between colistin and carbapenem susceptibility patterns

<table>
<thead>
<tr>
<th>Carbapenem susceptibility</th>
<th>Colistin susceptibility</th>
<th>Chi square</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susceptible (n=153)</td>
<td>Susceptible</td>
<td>144 (94.1%)</td>
<td>9 (5.9%)</td>
</tr>
<tr>
<td></td>
<td>Resistant</td>
<td>99 (65%)</td>
<td>44 (29%)</td>
</tr>
<tr>
<td>Resistant (n=155)</td>
<td>Susceptible</td>
<td>112 (72.3%)</td>
<td>43 (27.7%)</td>
</tr>
<tr>
<td></td>
<td>Resistant</td>
<td>72 (46.7%)</td>
<td>87 (53.3%)</td>
</tr>
<tr>
<td>Total (n=308)</td>
<td>Susceptible</td>
<td>256 (83.1%)</td>
<td>42 (16.9%)</td>
</tr>
<tr>
<td></td>
<td>Resistant</td>
<td>22 (7.1%)</td>
<td>277 (92.9%)</td>
</tr>
</tbody>
</table>

As Colistin resistance was detected in 43 CRGNB isolates (27.7%) per the reference BMD method, the majority of isolates were Klebsiella Spp (17/43, 39.5%) followed by Escherichia coli (13/43, 30.2%), Pseudomonas aeruginosa (6/43, 14%), Acinetobacter Spp (4/43, 9.3%) and Enterobacter Spp (3/43, 7%). While all Carbapenem resistant Citrobacter spp isolates were colistin susceptible.

Considering BMD, as the standard colistin susceptibility testing method. The Sensitivity, Specificity, PPV, NPV and Accuracy of CBDE were 99.09%, 93.33%, 97.32% 97.67%, 97.42% respectively. With almost perfect agreement between the two methods in detection of colistin susceptibility (Table 4).

By PCR, mcr-1 gene was detected in 3 out of 43 colistin-resistant CRGNB isolates (6.98%). The three isolates were E. coli. While mcr-2, -3, -4, and -5 were not detected at all in any of our tested isolates.
DISCUSSION

Infections with CRGNB are increasing globally, limiting the available therapeutic options for their treatment. Colistin is recommended as one of the last-resorts to treat these infections. Therefore, it is crucial to monitor its susceptibility.

In this study, 155 out of 308 GNB isolates (50.3%) were carbapenem resistant. Klebsiella spp were the most frequent CRGNB isolates (36.1%) followed by Escherichia coli (32.9%), Pseudomonas aeruginosa (12.9%), Acinetobacter spp (8.4%), Enterobacter spp (5.8%) and Citrobacter spp (3.9%). Matching with carbapenem resistance rates (54.5% and 55.8%) in previous studies.

On the contrary, lower rates (18.5% and 23.1%) were reported in other studies.

K. pneumonia was the highest isolated CRGNB in some studies, but E. coli was the highest (56.5% and 50%) in others.

In our study, sources of CRGNB isolates were urine (38.1%), followed by respiratory samples (29.7%), blood (21.3%), and pus and wound swabs (10.9%). Intensive Care Units were the main source of these samples (50.32%), followed by surgical departments (18.71%), Nursery (14.84%), Medical departments (9.03 %) and Burn Unit (7.1%). Kra et al. reported the same observations. While, Saed et al. mentioned that tracheal aspirate was the main source of CRGNB isolates.

Carbapenem resistant Enterobacteriaceae (CRE) comprise both carbapenemases producing (CP-CRE) which produce carbapenemases enzymes hydrolyzing carbapenem and non-carbapenemase producing CRE (non-CP-CRE) strains that have other causes like drug efflux pumps and outer membrane protein structural mutations resulting in drug impermeability. In this research, 129 of CRGNB isolates (83.2%) were carbapenemase positive by mCIM, among them 85 isolates (65.9%) were metallo-β-lactamase producers. This finding goes in line with results of Laolerd et al., Khattab et al. and Qadri et al. which observed that carbapenemases were the main carbapenem resistance mechanism with carbapenemases production rates 77.7%, 75.6% and 67.3% respectively. But decreased rate (18.5%) was detected by Kandeel. While, Ngbede et al. observed that none of their isolated carbapenem resistant organisms was carbapenemase producer nor harbor any known carbapenemase producing genes.

Regarding colistin MIC by BMD, our findings revealed that 5.7% of carbapenem susceptible and 27.7% of CRGNB isolates were non susceptible to colistin with a high statistically significant difference (p <0.001). Approximately similar colistin susceptibility pattern was detected. However, higher rates (64.8% and 53%) were detected in France, and in Egypt respectively, lower rates (16.4% and 2.79 %) were reported in previous Egyptian studies.

The difference in colistin resistance prevalence rate in previous studies resulting from the diversity in geographical regions, study populations, studied cases numbers, the patients’ general condition, type of collected samples, adherence to the infection control procedures, implementation of antibiotic stewardship programs and used antibiotic.

In our research, the most common colistin resistant CRGNB isolate was Klebsiella spp (39.5%). Similar finding was reported. But, Enterobacter was the common colistin-resistant strain in Prim et al. study.

Our findings revealed that, Sensitivity, Specificity, PPV, NPV and Accuracy of CBDE were 99.09%, 93.33%, 97.32% 97.67% and 97.42% respectively with almost perfect agreement in correlation to BMD. Matching with Foldes et al. who reported that Sensitivity, Specificity, PPV, NPV and Accuracy of CBDE were 100% (for each) with total agreement correlated to BMD. Colistin broth disk elusion method is an alternative simple, easy, inexpensive reliable option for assessing colistin sensitivity.

Among colistin-resistant isolates (n=43), we found mcr-1 gene in only 3 (6.98%) E. coli isolates. Similar mcr-1 prevalence rates (7.5% and 8.1%) were mentioned in Egypt and in Hong Kong respectively. Although, lower rate (2.9%) was reported in Egypt, higher rates were reported in North Italy (28.9%) and South Africa (83%) respectively. A higher existence rate of the mcr-1 gene in animal origin (33.3%) was reported. Colistin overuse and abuse of in the poultry industry and agriculture may be the key factor of mcr-1 high prevalence rate in bacteria isolated from animals and their products which may be the potential sources of mcr-1 in human’s origin. Plasmid mediated mcr-2, -3, -4, and -5 genes were not determined at all in any of our tested isolates.

CONCLUSION

The high colistin resistance prevalence has highlighted the possibility of losing colistin efficiency against CRGNB. Prospective surveillance should be implemented. Colistin broth disk elusion method is a simple, easy, inexpensive reliable option for testing colistin susceptibility. Efforts should be made to inhibit the emergency of CRGNB through the wise use of antimicrobial agents and strict adherence to infection control procedures including: implementation of CRE initial screening policy, patient isolation, initiation of contact precautions in addition to standard precautions, strengthening of environmental cleaning and disinfection with monitoring of cleaning performance through checklist, continuous surveillance, implementation of antibiotic stewardship program, antibiogram and MDRO care bundles.

This manuscript has not been previously published and is not under consideration in the same or substantially similar form in any other reviewed media.
I have contributed sufficiently to the project to be included as author. To the best of my knowledge, no conflict of interest, financial or others exist. All authors have participated in the concept and design, analysis, and interpretation of data, drafting and revising of the manuscript, and that they have approved the manuscript as submitted.

Acknowledgments:
Thanks to Departments of Medical Microbiology and Immunology and Central Laboratory, Faculty of Medicine, Menoufia University for their cooperation and continuous support.

REFERENCES

10. Tille PM. Bailey and Scott ‘s Diagnostic Microbiology; 2020: (18)

15. European Centre for Disease Prevention and Control (ECDC). (Laboratory manual for carbapenem and colistin resistance detection and characterization for the survey of carbapenem- and/or colistin resistant Enterobacteriaceae; 2019: (3). www.ecdc.europa.eu

